In this paper, the global optimization problem $\min_{y\in S} F(y)$ with $S$being a hyperinterval in $\Re^N$ and $F(y)$ satisfying the Lipschitz conditionwith an unknown Lipschitz constant is considered. It is supposed that thefunction $F(y)$ can be multiextremal, non-differentiable, and given as a`black-box'. To attack the problem, a new global optimization algorithm basedon the following two ideas is proposed and studied both theoretically andnumerically. First, the new algorithm uses numerical approximations tospace-filling curves to reduce the original Lipschitz multi-dimensional problemto a univariate one satisfying the H\"{o}lder condition. Second, the algorithmat each iteration applies a new geometric technique working with a number ofpossible H\"{o}lder constants chosen from a set of values varying from zero toinfinity showing so that ideas introduced in a popular DIRECT method can beused in the H\"{o}lder global optimization. Convergence conditions of theresulting deterministic global optimization method are established. Numericalexperiments carried out on several hundreds of test functions show quite apromising performance of the new algorithm in comparison with its directcompetitors.
展开▼
机译:在本文中,具有$ S $的全局优化问题$ \ min_ {y \ in S} F(y)$是满足Lipschitz条件且未知Lipschitz的$ \ Re ^ N $和$ F(y)$中的超区间考虑常数。假定函数$ F(y)$可以是极值的,不可微的,并以“黑匣子”形式给出。为了解决这个问题,提出了一种基于以下两个思想的全局优化算法,并在理论和数值上进行了研究。首先,新算法使用数值逼近曲线对空间进行填充,以将原始的Lipschitz多维问题简化为一个满足Hl“ lder条件的单变量。其次,该算法在每次迭代时都应用了一种新的几何技术,该技术可以处理多个从从零到无穷大的一组值中选择的可能的Hllder常数显示出来,以便将流行的DIRECT方法中引入的思想用于H globallder全局优化。结果确定性全局优化的收敛条件在数百个测试函数上进行的数值实验表明,与直接竞争者相比,新算法的性能令人鼓舞。
展开▼